Volume 36 Issue 3
Jun.  2016
Turn off MathJax
Article Contents
Youxiu WEI, Mu CHEN, Weiming LIU, Lei LI, Guanli ZHANG, Yue YAN. Recent Process and Application of Electrochromism[J]. Journal of Aeronautical Materials, 2016, 36(3): 108-123. doi: 10.11868/j.issn.1005-5053.2016.3.012
Citation: Youxiu WEI, Mu CHEN, Weiming LIU, Lei LI, Guanli ZHANG, Yue YAN. Recent Process and Application of Electrochromism[J]. Journal of Aeronautical Materials, 2016, 36(3): 108-123. 10.11868/j.issn.1005-5053.2016.3.012

Recent Process and Application of Electrochromism

doi: 10.11868/j.issn.1005-5053.2016.3.012
  • Received Date: 2016-02-19
  • Rev Recd Date: 2016-03-24
  • Publish Date: 2016-06-01
  • Based on the research and development of electrochromism, its commercial applications have been realized in the areas of building windows, car rear-view mirrors and aircraft windows. In this paper, constructions, material category, working principles and characteristic requirements of electrochromic device were to described in details. Preparing methods of electrochromic films and technologies requirements for practicality were listed. The status of electrochromic technologies on commercialization and latest research were also summarized and analyzed. Electrochromism has great commercial potential and important social value for green and energy saving, which is the milestone in its developing process. At present, the trend of electrochromic technology is focused on seeking the technical route and process of saving time and cost, exploiting its application areas by combining other technologies and developing practical products. Wet chemical methods with industrial prospect have advantages of lowering cost and increasing efficiency, and can be a research hotspot for popularizing electrochromic technology. Moreover, the development and preparation of electrolyte layer will be the core technology in the future.


  • loading
  • [1] GRANQVIST C G. Electrochromism and smart window design[J]. Solid State Ionics, 1992, 53:479-489.
    [2] AZENS A, AVENDANO E, GRANQVIST C G. Electrochromic materials and their applications in foil-based devices[J]. Advanced Optical Devices, Technologies, and Medical Applications, 2002, 5123:185-195.
    [3] DEB S K. A novel electrophotographic system[J]. Applied Optics, 1969, 3:192-195.
    [4] PALATNIK L S, MALYUK Y I, BELOZEROV V V. An X-ray diffraction study of the mechanism of reversible electrochemical dielectric semiconductor transformations in Nb2O5[J]. Doklady Akademii. Nauk SSSR, 1974, 215:1182-1185.
    [5] BALOUKAS B, LAMARRE, J-M, MARTINU L. Active metameric security devices using an electrochromic material[J]. Applied Optics, 2011, 50:C41-C49.
    [6] SVENSSON J S E M, GRANQVIST C G. Electrochromic coatings for "smart windows"[J]. Solar Energy Materials and Solar Cell, 1985, 12:391-402.
    [7] SVENSSON J S E M, GRANQVIST C G. Electrochromic tungsten-oxide films for energy-efficient windows[J]. Solar Energy Materials and Solar Cell, 1984, 11:29-34.
    [8] LAMPERT C M. Electrochromic materials and devices for energy-efficient windows[J]. Solar Energy Materials and Solar Cell, 1984, 11:1-27.
    [9] SVENSSON J S E M, GRANQVIST C G. Electrochromic coatings for smart windows[J]. Solar Energy Materials, 1985, 12(6):391-402.
    [10] SVENSSON J S E M, GRANQVIST C G. Electrochromic coatings for smart Windows[J]. Solar Energy Materials and Solar Cell, 1985, 12:391-402.
    [11] UNEP. Buildings and climate change:status, challenges and opportunities[R]. Paris, France:United Nations Environment Programme,2007.
    [12] GLICKSMAN L R. Energy efficiency in the built environment[J]. Physics Today, 2008, 61:35-40.
    [13] RICHTER B, GOLDSTON D, CRABTREE G, et al. How america can look within to achieve energy security and reduce global warming[J]. Reviews of Modern Physics, 2008, 80:S1-S107.
    [14] ARSENAULT H, HÉBERT M, DUBOIS, M-C. Effects of glazing colour type on perception of daylight quality, arousal, and switch-on patterns of elec-tric light in office rooms[J]. Building and Environment, 2012, 56:223-231.
    [15] LEE E S, DIBARTOLOMEO D L, KLEMS J H, et al. Monitored energy performance of electrochromic windows controlled for daylight and visual comfort[J]. ASHRAE Transactions 2006, 112:122-141.
    [16] MARKS A M. Electrooptical characteristics of dipole suspensions[J]. Appl Optics, 1969, 8:1397-1412.
    [17] KAHR B, FREUDENTHAL J, PHILLIPS S, et al. Herapathite[J]. Science, 2009, 324:1407-1407.
    [18] VERGAZ R, BARRIOS D, PENA J M S, et al. Electro-optical analysis of PEDOT symmetrical electrochromic devices[J]. Solar Energy Materials and Solar Cells, 2008, 92:107-111.
    [19] GARDINER D J, MORRIS S M, COLES H J. High-efficiency multistable switchable glazing using smectic A liquid crystals[J]. Solar Energy Materials and Solar Cells 2009, 93:301-306.
    [20] LEE E S, DIBARTOLOMEO D L, SELKOWITZ S E. Daylighting control performance of a thin-film ceramic electrochromic window:Field study results[J]. Energ Buildings, 2006, 38:30-44.
    [21] NATH P, BUNSHAH R F, BASOL B M, et al. Electrical and optical properties of In2O3:Sn films prepared by activated reactive evaporation[J]. Thin Solid Films, 1980, 72:463-468.
    [22] KOH S K, HAN Y G, LEE J H, et al. Material properties and growth control of undoped and Sn-doped In2O3 thin films prepared by using ion beam technologies[J]. Thin Solid Films, 2006, 496:81-88.
    [23] ABDUEV A KH, AKHMEDOV A K, ASVAROV A SH. The structural and electrical properties of Ga-doped ZnO and Ga,B-codoped ZnO thin films:the effects of additional boron impurity[J]. Solar Energy Materials and Solar Cell, 2007, 91:258-260.
    [24] AGURA H, SUZUKI A, MATSUSHITA T, et al. Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition[J]. Thin Solid Films, 2003, 445:263-267.
    [25] PARK S-M, IKEGAMI T, EBIHARA K. Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition[J]. Thin Solid Films, 2006, 513:90-94.
    [26] BAE J W, LEE S W, YEOM G Y. Doped-fluorine on electrical and optical properties of tin oxide films grown by ozone-assisted thermal CVD[J]. Journal of the Electrochemical Society, 2007, 154:D34-D37.
    [27] FRENNING G, ENGELMARK F, NIKLASSON G A, et al. Li conduction in sputtered amorphous Ta2O5[J]. Journal of the Electrochemical Society, 2001, 148:A418-A421.
    [28] YOO S J, LIM J W, SUNG Y-E. Improved electrochromic devices with an inorganic solid electrolyte protective layer[J]. Solar Energy Materials and Solar Cell, 2006, 90:477-484.
    [29] YANG H, WANG C, DIAO X, et al. A new all-thin-film electrochromic device using LiBSO as the ion conduct-ing layer[J]. Journal of Physics D:Applied Physics, 2008, 41:115301-115305.
    [30] NGUYEN C A, ARGUN A A, HAMMOND P T, et al. Layer-by-layer assembled solid polymer electrolyte for electrochromic devices[J]. Journal of Materials Chemistry, 2011, 23:2142-2149.
    [31] NGUYEN C A, XIONG S X, MA J, et al. Toward electrochromic device using solid electrolyte with polar polymer host[J]. Journal of Physical Chemstry B, 2009, 113:8006-8010.
    [32] AVELLANEDA C O, VIEIRA D F, AL-KAHLOUT A, et al. All solid-state electrochromic devices with gelatin-based electrolyte[J]. Solar Energy Materials and Solar Cells, 2008, 92:228-233.
    [33] ZHOU D, ZHOU R, CHEN C X, et al. Non-volatile polymer electrolyte based on poly(propylenecarbonate), ionic liquid, and lithium perchlorate for electrochromic devices[J]. Journal of Physical Chemstry B, 2013, 117:7783-7789.
    [34] PÉREZ L C, BRAND? O L, SOUSA J M, et al. Segmented polymer electrolyte membrane fuel cells-a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15:169-185.
    [35] DESAI S, SHEPHERD R L, INNIS P C, et al. Gel electrolytes with ionic liquid plasticiser for electrochromic devices[J]. Electrochimica Acta, 2011, 56:4408-4413.
    [36] ARGUN A A, CIRPAN A, REYNOLDS J R. The first truly all-polymer electrochromic devices[J]. Advanced Materials, 2003, 16:1338-1341.
    [37] SYDAM R, DEEPA M, SRIVASTAVA A K. Electrochromic device response controlled by an insitu poly-merized ionic liquid based gel electrolyte[J]. RSC Advanced, 2012, 2:9011-9021.
    [38] COSTA C, PEREIRA S, CORREIA N, et al. Study of electrochromic devices with nanocom-posites polymethacrylate hydroxyethylene resin based electrolyte[J]. Polymer for Advanced Technologies, 2012, 23:791-795.
    [39] GONG Y F, FU X K, ZHANG S P, et al. Preparation of a star network PEG-based gel polymer electrolyte and its application to electrochromic devices[J]. Chinese Journal of Chemistry, 2007, 25:1743-1747.
    [40] SARICIFTCI N S, MEHRING M, NEUGEBAUER N. In situ studies on the structural mechanism of zwitter-viologen system during electrochemical charge-transfer reactions[J]. Synthetic Metals, 1991, 41/42/43:2971-2971.
    [41] SLIWA W, BACHOWSKA B, ZELICHOWICZ N. Chemistry of viologens[J]. Heterocycles, 1991, 32:2241-2273.
    [42] KAIFER A E, BARD A J. Micellar effects on the reductive electrochemistry of methylviologen[J]. Journal of Physical Chemistry B, 1985, 89:4876-4880.
    [43] ČÁRSKY P, HVNIG S, SCHEUTZOW D, et al. Theoretical study of redox equilibria[J]. Tetrahedron, 1969, 25:4781-4796.
    [44] WATANABE T, HONDO K. Measurement of the extinction coefficient of the methyl viologen cation radical and the efficiency of its formation by semiconductor photocatalysis[J]. Journal of Physics and Chemistry, 1982, 86:2617-2619.
    [45] MORTIMER R J. Organic electrochromic materials[J]. Electrochimica Acta, 1999, 44:2971-2981.
    [46] MORTIMER R J, DYER A L, REYNOLDS J R. Electrochromic organic and polymeric materials for display applications[J]. Displays, 2006, 27:2-18.
    [47] BEAUJUGE P M, REYNOLDS J R. Color control in π-conjugated organic polymers for use in electrochromic devices[J]. Chemical Reviews, 2010, 110:268-320.
    [48] DYER A L, REYNOLDS J R. Electrochromism in conjugated conducting polymers[M][C]//Handbook of Conducting Polymers. Boca Raton, USA:CRC Press, 2007.
    [49] DYER A L, CRAIG M R, BABIARZ J E, et al. Orange and red to transmissive electrochromic polymers based on electron-rich dioxythiophenes[J]. Macromolecules, 2010, 43(10):4460-4467.
    [50] GUNBAS G, TOPPARE L. Electrochromic conjugated polyhetero-cycles and derivatives-highlights from the last decade towards realization of long lived aspirations[J]. Chemical Communication, 2012, 48:1083-1101.
    [51] DYER A L, HOMPSON E J, REYNOLDS J R. Completing the color palette with spray-processable polymer electrochromics[J]. ACS Applied Materials and Interfaces, 2011, 3:1787-1795.
    [52] AMB C M, KERSZULIS J A, HOMPSON E J, et al. Propylenedioxythiophene (ProDOT)-phenylene copolymers allow a yellow-to-transmissive electrochrome[J]. Polymer Chemistry, 2011, 2:812-814.
    [53] KERSZULIS J A, AMB C, DYER A, et al. Follow the yellow brick road-structural optimization of vibrant yellow-to-transmissive electrochromic conjugated polymers[J]. Macromolecules, 2014, 47:5462-5469.
    [54] DYER A L, CRAIG M R, BABIARZ J E, et al. Orange and red to transmissive electrochromic polymers based on electron-rich dioxythio-phenes[J]. Macromolecules, 2010, 43:4460-4467.
    [55] LI M, PATRA A, SHEYNIN Y, et al. Hexyl-derivatized poly(3,4-ethylenedioxyselenophene):novel highly stable organic elec-trochromic material with high contrast ratio, high coloration efficiency, and low-switching voltage.[J]. Advanced Materials, 2009, 21:1707-1711.
    [56] OZKUT M I, ATAK S, ONAL A M, et al. A blue to highly transmissive soluble elec-trochromic polymer based on poly(3,4-propylenedioxyselenophene) with a high stability and coloration efficiency[J]. Journal of Materials Chemistry, 2011, 21:5268-5272.
    [57] SONMEZ G, SONMEZ H B, SHEN C K F, et al. A processable green polymeric electrochromic[J]. Macromolecules, 2005, 38:669-675.
    [58] GUNBAS G E, DURMUS A, TOPPARE L. Could green be greener? Novel donor-acceptor-type electrochromic polymers:towards excellent neutral green materials with exceptional transmissive oxidized states for completion of RGB color space[J]. Advanced Materials, 2008, 20(4):691-695.
    [59] BEAUJUGE P M, ELLINGER S, REYNOLDS J R. Spray process-able green to highly transmissive electrochromics via chemically polymerizable donor-acceptor heterocyclic pentamers[J]. Advanced Materials, 2008, 20(14):2772-2776.
    [60] SHI P J, AMB C M, KNOTT E P, et al. Broadly absorbing black to transmissive switching electrochromic polymers[J]. Advanced Materials, 2010, 22(44):4949-4953.
    [61] ICLI M, PAMUK M, ALGI F, et al. A new soluble neutral state black electrochromic copolymer via a donor-acceptor approach[J]. Organic Electronics, 2010, 11(7):1255-1260.
    [62] DEB S K. A novel electropho-tographic system[J]. Appl Opt Suppl, 1969, 3:192-195.
    [63] SVENSSON J S E M, GRANQVIST C G. Electrochromic hydrated nickel oxide coatings for energy efficient windows:optical properties and coloration mechanism[J]. Applied Physical Letters, 1986, 49:1566-1568.
    [64] WEI Y X, LI M, ZHENG J M, et al. Structural characterization and electrical and optical properties of V2O5 films prepared via ultrasonic spraying[J]. Thin Solid Films, 2013, 534:446-451.
    [65] VERMA A, SAMANTA S B, MEHRA N C, et al. Sol-gel derived nanocrystalline CeO(2)-TiO(2) coatings for electrochromic windows[J]. Solar Energy Materials and Solar Cells, 2005, 86:85-103.
    [66] GRANQVIST C G. Electrochromics for smart windows:Oxide-based thin films and devices[J]. Thin Solid Films 2014, 564:1-38.
    [67] NEFF V D. Electrochemical oxidation and reduction of thin-films of prussian blue[J]. Journal of the Electrochemical Society, 1978, 125:886-887.
    [68] ROIG A, NAVARRO J, GARCIA J J, et al. Voltammetric study on the stability of deposited prussian blue films against successive potential cycling[J]. Electrochimica Acta, 1994, 39:437-442.
    [69] ITAYA K, UCHIDA I, NEFF V D. Electrochemistry of polynuclear transition-metal cyanides-prussian blue and its analogs[J]. Accounts of Chemical Research, 1986, 19:162-168.
    [70] DEMIRI S, NAJDOSKI M, VELEVSKA J. A simple chemical method for deposition of electrochromic Prussian blue thin films[J]. Materials Research Bulletin, 2011, 46:2484-2488.
    [71] SIPERKO L M, KUWANA T. Electrochemical and spectroscopic studies of metal hexacyanoferrate films 2:cupric hexacyanoferrate and Prussian blue layered films[J]. Journal of Electrochemical Society, 1986, 133:2439-2440.
    [72] JOSEPH J, GOMATHI H, PRABHAKARA RAO G. Electro-chemical characteristics of thin films of nickel hexacyanoferrate formed on carbon substrates[J]. Electrochimica Acta, 1991, 36:1537-1541.
    [73] JOSEPH J, GOMATHI H, PRABHAKARA RAO G. Electrodes modified with cobalt hexacyanoferrate[J]. Journal of Electroanalytical Chemistry, 1991, 304:263-269.
    [74] WILDE R E, GHOSH S N, MARSHALL B J. The Prussian blues[J]. Inorganic Chemistry, 1970, 9:2512-2516.
    [75] JAYALAKSHMI M, SCHOLZ F. Performance characteristics of zinc hexacyanoferrater/prussian blue and copper hexacyanoferrater/prussian blue solid state secondary cells[J]. Journal of Power Sources, 2000, 91:217-223.
    [76] KULESZA P J, FASZYNSKA M. Indium(III)-hexacyanoferrate(III,II) as an inorganic material analogous to redox polymers for modification of electrode surfaces[J]. Electrochimica Acta, 1989, 34:1749-1753.
    [77] AKIHITO G, HIROAKI U, MANABU I, et al. Simple synthesis of three primary colour nanoparticle inks of Prussian blue and its analogues[J]. Nanotechnology, 2007, 18:345609-345615.
    [78] BALZANI V, JURIS A, VENTURI M, et al. Luminescent and redox-active polynuclear transition-metal complexes[J]. Chemical Reviews, 1996, 96:759-833.
    [79] KAIM W. Concepts for metal complex chromophores absorbing in the near infrared[J]. Coordination Chemistry Reviews, 2011, 255:2503-2513.
    [80] YAO C J, YAO J, ZHONG Y W. Electronic communication between two amine redox centers bridged by a bis(terpyridine)ruthenium(II) complex[J]. Inorganic Chemistry, 2011, 50:6847-6849.
    [81] KUMAR A, SINGH P, KULKARNI N, et al. Structural and optical studies of nanocrystalline V2O5 thin films[J]. Thin Solid Films, 2008, 516:912-918.
    [82] PRODIUS D, MACAEV F, MEREACRE V, et al. Synthesis and characterization of {Fe2CuO} clusters as precursors for nanosized catalytic system for Biginelli reaction[J]. Inorganic Chemistry Communications, 2009, 12:642-645.
    [83] WILLINGER M G, NERI G, RAUWEL E, et al. Vanadium oxide sensing layer grown on carbon nanotubes by a new atomic layer deposition process[J]. Nano Letters, 2008, 8:4201-4204.
    [84] KIM H, LEE H B R, MAENG W J. Applications of atomic layer deposition to nanofabrication and emerging nanodevices[J]. Thin Solid Films, 2009, 517:2563-2580.
    [85] BOUZIDI A, BENRAMDANE N, NAKRELA A, et al. First synthesis of vanadium oxide thin films by spray pyrolysis technique[J]. Materials Science and Engineering:B-Solid, 2002, 95:141-147.
    [86] CHRONAKIS I S. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-a review[J]. Journal of Materials Process Technology, 2005, 167:283-293.
    [87] CHEN J J, VACCHIO M J, WANG S J, et al. The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications[J]. Solid State Ionics, 2008, 178:1676-1693.
    [88] OZER N. Electrochemical properties of sol-gel deposited vanadium pentoxide films[J]. Thin Solid Films, 1997, 305:80-87.
    [89] DE ANDRADE I C Jr, ZHANG R, KANICKI J, et al. Properties of electrodeposited WO3 thin films[J]. Molecular Crystals and Liquid Crystals, 2014, 604:71-83.
    [90] MONK P M S, MORTIMER R J, ROSSEINSKY D R. Electrochromism-fundamentals and applications[M]. Weinheim (Federal Republic of Germany):VCH Verlagsgesellschaft mbH, 1995.
    [91] GRANQVIST C G. Oxide electrochromics:An introduc tion to devices and materials[J]. Solar Energy Materials and Solar Cells, 2012, 99:1-13.
    [92] BAETENS R, JELLE B P, GUSTAVSEN A. Properties, requirement s and possibilit ies of smart windows for dynamic daylight and solar energy control in buildings:a state-of-the-art review[J]. Solar Energy Materials and Solar Cells, 2010, 94:87-105.
    [93] LLORDES A, GARCIA G, GAZQUEZ J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites[J]. Nature, 2013, 500:323-326.
    [94] PFLUGHOEFFT M, WELLER H. Spectroelectrochemical analysis of the electrochromism of antimony-doped nanoparticulate tin-dioxide electrodes[J]. The Journal of Physical Chemistry B, 2002, 106:10530-10534.
    [95] SAKAMOTO A, YAMAMOTO S. Glass-ceramics:engineering principles and applications[J]. International Journal of Applied Glass Science, 2010, 1:237-247.
    [96] RUNNERSTROM E L, LLORDES A, LOUNIS S D, et al. Nanos-tructured electrochromic smart windows:traditional materials and NIR-selective plasmonic nanocrystals[J]. Chemical Communications, 2014, 50:10555-10572.
    [97] KANEHARA M, KOIKE H, YOSHINAGA T, et al. Indium tin oxide nanoparticles with composition-ally tunable surface plasmon resonance frequencies in the near-IR region[J]. Journal of American Chemistry Society, 2009, 131:17736-17737.
    [98] GARCIA G, BUONSANTI R, RUNNERSTROM E L, et al. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals[J]. Nano Letters, 2011, 11:4415-4420.
    [99] CHOU H H, NGUYEN A, CHORTOS A, et al. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing[J]. Nature Communications, 2015,6:8011.
    [100] INVERNALE M A, DING Y, SOTZING G A. All-organic electrochromic spandex[J]. ACS Applied Materials and Interfaces, 2010, 2:296-300.
    [101] MEUNIER L, KELLY F M, COCHRANE C, et al. Flexible displays for smart clothing:part II:electrochromic displays[J]. Indian Journal of Fibre andTextile Research, 2011, 36:429-435.
    [102] LAFORGUE A. Electrically con-trolled colour-changing textiles using the resistive heating properties of PEDOT nanofibers[J]. Journal of Materials Chemistry, 2010, 20:8233-8235.
    [103] BECHINGER C, FERRERE S, ZABAN A, et al. Photoelectrochromic windows and displays[J]. Nature, 1996, 383:608-610.
    [104] KRAŠOVEC U O, TOPIČ M, GEORG A, et al. Preparation and characterisation of nano-structured WO3-TiO2 layers for photoelec-trochromic devices[J]. Journal of Sol-Gel Science and Technology, 2005, 36:45-52.
    [105] LEFTHERIOTIS G, SYRROKOSTAS G, YIANOULIS P. Partly covered photoelectrochromic devices with enhanced coloration speed and efficiency[J]. Solar Energy Materials and Solar Cells, 2012, 96:86-92.
    [106] LIAO J Y, HO K C. A photo-electrochromic device using a PEDOT thin film[J]. Journal of New Materials for Electrochemical System, 2005, 8:37-47.
    [107] HECHAVARRÍA L, MENDOZA N, RINCÓN M E, et al. Photoelectrochromic performance of tungsten oxide based devices with PEG-titanium complex as solvent-free electrolytes[J]. Solar Energy Materials and Solar Cells, 2012, 100:27-32.
    [108] WU J J, HSIEH M D, LIAO W P, et al. Fast-switching photovoltachromic cells with tunable transmittance[J]. ACS Nano, 2009, 3:2297-2303.
    [109] ZHANG F F, LI B Z, ZHENG J M, et al. Facile fabrication of micro-nano structured triboelectric nanogenerator with high electric output[J]. Nanoscale Research Letters, 2015, 10:298-304.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (9350) PDF downloads(125) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint