Volume 38 Issue 4
Aug.  2018
Turn off MathJax
Article Contents
Fantao KONG, Wei SUN, Fei YANG, Xiaopeng WANG, Yuyong CHEN. Research Progress of Metal-Intermetallic Laminated Composites[J]. Journal of Aeronautical Materials, 2018, 38(4): 37-46. doi: 10.11868/j.issn.1005-5053.2017.000204
Citation: Fantao KONG, Wei SUN, Fei YANG, Xiaopeng WANG, Yuyong CHEN. Research Progress of Metal-Intermetallic Laminated Composites[J]. Journal of Aeronautical Materials, 2018, 38(4): 37-46. 10.11868/j.issn.1005-5053.2017.000204

Research Progress of Metal-Intermetallic Laminated Composites

doi: 10.11868/j.issn.1005-5053.2017.000204
  • Received Date: 2017-12-08
  • Rev Recd Date: 2018-04-16
  • Available Online: 2018-05-07
  • Publish Date: 2018-08-01
  • Metal-intermetallic laminated composites not only retain the high temperature strength of intermetallics, but also possess the high toughness and ductility of metal at room temperature which are gradually becoming the research priorities of domestic and overseas researchers. In this article, authors introduced Ti-Al, Ni-Al, Fe-Al, Nb-Al and other common metal-intermetallic laminated composites and emphasized on the advantages and disadvantages of synthesis methods, such as hot-pressing, explosive welding, spark plasma sintering and so on. The toughening mechanisms inside and outside of metal-intermetallic laminated composites were summarized. Finally, the deficiencies about the research of metal-intermetallic laminated composites at present were analyzed. The research must focus on the Ti-Al laminated composite. Improving the ductility and toughness at room temperature, researching the toughening mechanism and optimizing the fabrication process are the key issues to the engineering application of metal-intermetallic laminated composites.


  • loading
  • [1] WARD C C M, MINOR R, DOORBAR P J. Intermetallic-matrix composites–a review[J]. Intermetallics, 1996, 4(3): 217-229 doi: 10.1016/0966-9795(95)00037-2
    [2] YAMAGUCHI M, INUI H, ITO K. High-temperature structural intermetallics[J]. Acta Materialia, 2000, 48(1): 307-322 doi: 10.1016/S1359-6454(99)00301-8
    [3] FLEISCHER R L, DIMIDUK D M, LIPSITT H A. Intermetallic compounds for strong high-temperature materials: status and potential[J]. Annual Review of Materials Science, 1989, 19(1): 231-263 doi: 10.1146/annurev.ms.19.080189.001311
    [4] LIU C T, STIEGLER J O. Ductile ordered intermetallic alloys[J]. Science, 1984, 226(4675): 636-642 doi: 10.1126/science.226.4675.636
    [5] KIM Y W. Intermetallic alloys based on gamma titanium aluminide[J]. JOM, 1989, 41(7): 24-30 doi: 10.1007/BF03220267
    [6] CLEGG W J, KENDALL K, ALFORD N M N, et al. A simple way to make tough ceramics[J]. Nature, 1990, 347(6292): 455-457 doi: 10.1038/347455a0
    [7] ROWE R G, SKELLY D W, LARSEN M, et al. Microlaminated high temperature intermetallic composites[J]. Scripta Metallurgica Materialia, 1994, 31(11): 1487-1492 doi: 10.1016/0956-716X(94)90061-2
    [8] 向春霆, 范镜泓. 自然复合材料的强韧化机理和仿生复合材料的研究[J]. 力学进展, 1994, 24(2): 220-232

    XIANG C T, FAN J H. On the strengthening and toughening mechanism of natural composites and research of biomimetic composites[J]. Advances in Mechanics, 1994, 24(2): 220-232.)
    [9] WAS G S, FOECKE T. Deformation and fracture in microlaminates[J]. Thin Solid Films, 1996, 286(1/2): 1-31
    [10] SURESH S. Modeling and design of multi-layered and graded materials[J]. Progress in Materials Science, 1997, 42(1/4): 243-251
    [11] ÇAM G, BOHM K H, MULLAUER J, et al. The fracture behavior of diffusion-bonded duplex gamma TiAl[J]. JOM, 1996, 48(11): 66-68
    [12] VANLOO F J J, RIECK G D. Diffusion in the titanium-aluminium system-I. Interdiffusion between solid Al and Ti or Ti-Al alloys[J]. Acta Metallurgica, 1973, 21(1): 61-71 doi: 10.1016/0001-6160(73)90220-4
    [13] VANLOO F J J, RIECK G D. Diffusion in the titanium-aluminium system-II. Interdiffusion in the composition range between 25 and 100 at. % Ti[J]. Acta Metallurgica, 1973, 21(1): 73-84 doi: 10.1016/0001-6160(73)90221-6
    [14] 陆必志, 龙坚战. Ni-Al金属间化合物合成机理的研究[J]. 硬质合金, 2011, 28(5): 276-282 doi: 10.3969/j.issn.1003-7292.2011.05.002

    LU B Z, LONG J Z. Study on the synthesis mechanism of Ni-Al intermetallic compound[J]. Cemented Carbide, 2011, 28(5): 276-282.) doi: 10.3969/j.issn.1003-7292.2011.05.002
    [15] 王兴庆. 反应烧结制取铁铝系金属间化合物的研究[D]. 长沙: 中南大学, 2002.

    WANG X Q. Research of Fe-Al intermetallic compounds by reactive sintering[D]. Changsha: Central South University, 2002.
    [16] ABBASI M, TAHERI A K, SALEHI M T. Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process[J]. Journal of Alloys and Compounds, 2001, 319(1/2): 233-241
    [17] BLOYER D R, VENKATESWARA RAO K T, RITCHIE R O. Resistance-curve toughening in ductile/brittle layered structures: Behavior in Nb/Nb3Al laminates[J]. Materials Science and Engineering: A, 1996, 216(1/2): 80-90
    [18] CHUNG D S, ENOKI M, KISHI T. Microstructural analysis and mechanical properties of in situ Nb/Nb-aluminide layered materials[J]. Science and Technology of Advanced Materials, 2002, 3(2): 129-135 doi: 10.1016/S1468-6996(02)00007-4
    [19] PRICE R D, JIANG F C, KULIN R M, et al. Effects of ductile phase volume fraction on the mechanical properties of Ti-Al3Ti metal-intermetallic laminate (MIL) composites[J]. Materials Science and Engineering: A, 2011, 528(7/8): 3134-3146
    [20] VECCHIO K S, JIANG F C. Fracture toughness of ceramic-fiber-reinforced metallic-Intermetallic-Laminate (CFR-MIL) composites[J]. Materials Science and Engineering: A, 2016, 649: 407-416 doi: 10.1016/j.msea.2015.10.018
    [21] WANG E H, TIAN Y, WANG Z Q, et al. A study of shape memory alloy NiTi fiber/plate reinforced (SMAFR/SMAPR) Ti-Al laminated composites[J]. Journal of Alloys and Compounds, 2017, 696: 1059-1066 doi: 10.1016/j.jallcom.2016.12.062
    [22] RAWERS J C, ALMAN D E. Fracture characteristics of metal/intermetallic laminar composites produced by reaction sintering and hot pressing[J]. Composites Science and Technology, 1995, 54(4): 379-384 doi: 10.1016/0266-3538(95)00072-0
    [23] KONIECZNY M. Mechanical properties and deformation behavior of laminated Ni-(Ni2Al3+NiAl3) and Ni-(Ni3Al+NiAl) composites[J]. Materials Science and Engineering: A, 2013, 586(Suppl C): 11-18
    [24] KAJUCH J, SHORT J, LEWANDOWSKI J J. Deformation and fracture behavior of Nb in Nb5Si3/Nb laminates and its effect on laminate toughness[J]. Acta Metallurgica Materialia, 1995, 43(5): 1955-1967 doi: 10.1016/0956-7151(94)00391-T
    [25] ZHANG Y J, CHENG X W, CAI H N, et al. Effects of annealing time on the microstructures and tensile properties of formed laminated composites in Ti-Ni system[J]. Journal of Alloys and Compounds, 2017, 699(Suppl C): 695-705
    [26] CAO Y, GUO C H, ZHU S F, et al. Fracture behavior of Ti/Al3Ti metal-intermetallic laminate (MIL) composite under dynamic loading[J]. Materials Science and Engineering: A, 2015, 637: 235-242 doi: 10.1016/j.msea.2015.04.025
    [27] ZHOU P J, GUO C H, WANG E H, et al. Interface tensile and fracture behavior of the Ti/Al3Ti Metal-Intermetallic Laminate (MIL) composite under quasi-static and high strain rates[J]. Materials Science and Engineering: A, 2016, 665: 66-75 doi: 10.1016/j.msea.2016.04.020
    [28] WANG E H, GUO C H, ZHOU P J, et al. Fabrication, mechanical properties and damping capacity of shape memory alloy NiTi fiber-reinforced metal-intermetallic laminate (SMAFR-MIL) composite[J]. Materials & Design, 2016, 95: 446-454
    [29] PENG L M, WANG J H, LI H, et al. Synthesis and microstructural characterization of Ti-Al3Ti metal-intermetallic laminate (MIL) composites[J]. Scripta Materialia, 2005, 52(3): 243-248 doi: 10.1016/j.scriptamat.2004.09.010
    [30] 李正华. 生产复合板的主要方法及其基本特点[J]. 稀有金属材料与工程, 1990(1): 71-74 doi: 10.3321/j.issn:1002-185X.1990.01.002

    LI Z H. The main methods of producing composite board and their basic characteristics[J]. Rare Metal Materials and Engineering, 1990(1): 71-74.) doi: 10.3321/j.issn:1002-185X.1990.01.002
    [31] MAIER V, HOPPEL H W, GOKEN M. Nanomechanical behaviour of Al-Ti layered composites produced by accumulative roll bonding[C]//15th International Conference on the Strength of Materials (ICSMA-15). Bristol: Journal of Physics, 2010: 012108.
    [32] OH J, PYO S G, LEE S, et al. Fabrication of multilayered titanium aluminide sheets by self-propagating high-temperature synthesis reaction using hot rolling and heat treatment[J]. Journal of Materials Science, 2003, 38(17): 3647-3651 doi: 10.1023/A:1025637600400
    [33] KIM I K, HONG S I. Effect of heat treatment on the bending behavior of tri-layered Cu/Al/Cu composite plates[J]. Materials & Design, 2013, 47(9): 590-598
    [34] SRIVASTAVA V C, SINGH T, GHOSH C S, et al. Microstructural characteristics of accumulative roll-bonded Ni-Al-based metal-intermetallic laminate composite[J]. Journal of Materials Engineering and Performance, 2012, 21(9): 1912-1918 doi: 10.1007/s11665-011-0114-y
    [35] ANNE G, RAMESH M R, NAYAKA H S, et al. Microstructure evolution and mechanical and corrosion behavior of accumulative roll bonded Mg-2%Zn/Al-7075 multilayered composite[J]. Journal of Materials Engineering and Performance, 2017, 26(4): 1726-1734 doi: 10.1007/s11665-017-2576-z
    [36] MA M, MENG X, LIU W C. Microstructure and mechanical properties of Ti/Al/Ti laminated composites prepared by hot rolling[J]. Journal of Materials Engineering and Performance, 2017, 26(7): 3569-3578 doi: 10.1007/s11665-017-2769-5
    [37] 孔凡涛, 陈玉勇. γ-TiAl/TC4复合板材的制备及组织性能研究[J]. 稀有金属材料与工程, 2009, 38(8): 1484-1486 doi: 10.3321/j.issn:1002-185X.2009.08.040

    KONG F T, CHEN Y Y. Preparation of γ-TiAl/TC4 composite sheet and its microstructure and properties[J]. Rare Metal Materials and Engineering, 2009, 38(8): 1484-1486.) doi: 10.3321/j.issn:1002-185X.2009.08.040
    [38] KONG F T, CHEN Y Y, ZHANG D L. Interfacial microstructure and shear strength of Ti-6Al-4V/TiAl laminate composite sheet fabricated by hot packed rolling[J]. Materials & Design, 2011, 32(6): 3167-3172
    [39] CHU Q L, ZHANG M, LI J H, et al. Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding[J]. Materials Science and Engineering: A, 2017, 689(Suppl C): 323-331.
    [40] ATHAR M M H, TOLAMINEJAD B. Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding[J]. Materials & Design, 2015, 86: 516-525
    [41] ZHANG N, WANG W X, CAO X Q, et al. The effect of annealing on the interface microstructure and mechanical characteristics of AZ31B/AA6061 composite plates fabricated by explosive welding[J]. Materials & Design, 2015, 65(Suppl C): 1100-1109
    [42] LAZURENKO D V, BATAEV I A, MALI V I, et al. Explosively welded multilayer Ti-Al composites: Structure and transformation during heat treatment[J]. Materials & Design, 2016, 102(Suppl C): 122-130
    [43] MEI B C, MIYAMOTO Y. Preparation of Ti-Al intermetallic compounds by spark plasma sintering[J]. Metallurgical and Materials Transactions A, 2001, 32(3): 843-847 doi: 10.1007/s11661-001-0101-2
    [44] SUN Y B, VAJPAI S K, AMEYAMA K, et al. Fabrication of multilayered Ti-Al intermetallics by spark plasma sintering[J]. Journal of Alloys and Compounds, 2014, 585: 734-740 doi: 10.1016/j.jallcom.2013.09.215
    [45] 孙彦波, 马凤梅, 肖文龙, 等. Ti-Al系金属间化合物基叠层结构材料的制备技术与组织性能特征[J]. 航空材料学报, 2014, 34(4): 98-111

    SUN Y B, MA F M, XIAO W L, et al. Preparation and performance characteristics for multilayered Ti-Al intermetallics alloys[J]. Journal of Aeronautical Materials, 2014, 34(4): 98-111.)
    [46] YU C X, ZHAO X J, XIAO L R, et al. Microstructure and mechanical properties of in-situ laminated Nb/Nb5Si3 composites[J]. Materials Letters, 2017, 209(Suppl C): 606-608
    [47] HAN J C, ZHANG D M, CHEN G Q, et al. Fabrication, microstructure and properties of electron beam-physical vapor deposited TiAl sheet and TiAl/Nb laminated composites[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(Suppl 2): S449-S452
    [48] 张小朋. EB-PVD制Ni/Ni3Al微叠层板的组织结构及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.

    ZHANG X P. Study on microstructure and properties of Ni/Ni3Al microlaminate sheets deposited by EB-PVD[D]. Harbin: Harbin Institute of Technology, 2007.
    [49] 马李, 孙跃, 赫晓东. Ti/Ti-Al微叠层复合材料的微观组织与性能研究[J]. 材料工程, 2007(增刊 1): 69-72

    MA L, SUN Y, HAO X D. Study on microstructures and mechanical properties of Ti/Ti-Al micro-laminated composite[J]. Journal of Materials Engineering, 2007(Suppl 1): 69-72.)
    [50] JINDAL V, SRIVASTAVA V C. Growth of intermetallic layer at roll bonded IF-steel/aluminum interface[J]. Journal of Materials Processing Technology, 2008, 195(1/2/3): 88-93
    [51] CUI X P, FAN G H, GENG L, et al. Fabrication of fully dense TiAl-based composite sheets with a novel microlaminated microstructure[J]. Scripta Materialia, 2012, 66(5): 276-279
    [52] LESUER D R, SYN C K, SHERBY O D, et al. Mechanical behaviour of laminated metal composites[J]. International Materials Reviews, 1996, 41(5): 169-197 doi: 10.1179/imr.1996.41.5.169
    [53] BANNISTER M, ASHBY M F. The deformation and fracture of constrained metal sheets[J]. Acta Metallurgica Materialia, 1991, 39(11): 2575-2582 doi: 10.1016/0956-7151(91)90072-9
    [54] THIYANESHWARAN N, SIVAPRASAD K, RAVISANKAR B. Work hardening behavior of Ti/Al-based metal intermetallic laminates[J]. The International Journal of Advanced Manufacturing Technology, 2016, 93(1/2/3/4): 361-374
    [55] SYN C K, LESUER D R, WOLFENSTINE J, et al. Layer thickness effect on ductile tensile fracture of ultrahigh carbon steel-brass laminates[J]. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1993, 24(7): 1647-1653 doi: 10.1007/BF02646603
    [56] OSMAN T M, LEWANDOWSKI J J, LESUER D R. The fracture resistance of layered DRA materials: influence of laminate thickness[J]. Materials Science and Engineering: A, 1997, 229(1/2): 1-9
    [57] ROHATGI A, HARACH D J, VECCHIO K S, et al. Resistance-curve and fracture behavior of Ti-Al3Ti metallic-intermetallic laminate (MIL) composites[J]. Acta Materialia, 2003, 51(10): 2933-2957 doi: 10.1016/S1359-6454(03)00108-3
    [58] MIZUUCHI K, INOUE K, SUGIOKA M, et al. Properties of Ni-aluminides-reinforced Ni-matrix laminates synthesized by pulsed-current hot pressing (PCHP)[J]. Materials Science and Engineering: A, 2006, 428(1/2): 169-174
    [59] DUREJKO T, LIPIŃSKI S, BOJAR Z, et al. Processing and characterization of graded metal/intermetallic materials: the example of Fe/FeAl intermetallics[J]. Materials & Design, 2011, 32(5): 2827-2834
    [60] BLOYER D R, RITCHIE R O, VENKATESWARA R K T. Fatigue-crack propagation behavior of ductile/brittle laminated composites[J]. Metallurgical and Materials Transactions A, 1999, 30(3): 633-642 doi: 10.1007/s11661-999-0055-3
    [61] 李亚江, 魏守征, PUCHKOV U A. 特种加工技术在某新型微叠层复合材料中的应用[J]. 航空制造技术, 2012, 411(15): 51-55 doi: 10.3969/j.issn.1671-833X.2012.15.007

    LI Y J, WEI S Z, PUCHKOV U A. Application of special processing technology in microlaminate composites[J]. Special Processing Technology, 2012, 411(15): 51-55.) doi: 10.3969/j.issn.1671-833X.2012.15.007
    [62] 程玉洁, 果春焕, 周培俊, 等. 金属间化合物基层状复合材料Ti/Al3Ti制备技术及其研究进展[J]. 中国材料进展, 2015, 34(4): 317-325

    CHENG Y J, GUO C H, ZHOU P J, et al. Synthesis techniques and research progress of the metal-intermetallic laminate composites Ti/Al3Ti[J]. Materials China, 2015, 34(4): 317-325.)
    [63] VECCHIO K S. Synthetic multifunctional metallic-intermetallic laminate composites[J]. JOM, 2005, 57(3): 25-31 doi: 10.1007/s11837-005-0229-4
    [64] HAN Y Q, LIN C F, HAN X X, et al. Fabrication, interfacial characterization and mechanical properties of continuous Al2O3 ceramic fiber reinforced Ti/Al3Ti metal-intermetallic laminated (CCFR-MIL) composite[J]. Materials Science and Engineering: A, 2017, 688: 338-345 doi: 10.1016/j.msea.2017.02.024
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (7216) PDF downloads(139) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint