Volume 38 Issue 5
Oct.  2018
Turn off MathJax
Article Contents
Jianzhan LONG, Yong DU, Bizhi LU, Weibing ZHANG, Tao XU, Zhongjian ZHANG, Maozhong YI. Research Progress in Cemented Carbide with Co-Ni-Al Composite Binder Phase[J]. Journal of Aeronautical Materials, 2018, 38(5): 47-58. doi: 10.11868/j.issn.1005-5053.2018.000022
Citation: Jianzhan LONG, Yong DU, Bizhi LU, Weibing ZHANG, Tao XU, Zhongjian ZHANG, Maozhong YI. Research Progress in Cemented Carbide with Co-Ni-Al Composite Binder Phase[J]. Journal of Aeronautical Materials, 2018, 38(5): 47-58. 10.11868/j.issn.1005-5053.2018.000022

Research Progress in Cemented Carbide with Co-Ni-Al Composite Binder Phase

doi: 10.11868/j.issn.1005-5053.2018.000022
  • Received Date: 2018-03-08
  • Rev Recd Date: 2018-07-11
  • Available Online: 2018-06-19
  • Publish Date: 2018-06-01
  • The application background of Co-Ni-Al composite binder phase in cemented carbide was introduced. The latest research results of Co-based superalloy and the properties of cemented carbide with binder strengthened by ordered phase were briefly described. The application of integrated computational material engineering in the research and development of Co-Ni-Al composite binder was introduced. The progress in the preparation, microstructure characterization and performance of WC-Co-Ni-Al cemented carbides were summarized. The results show that the composition of Co-Ni-Al composite binder has obvious influence on the solid-liquid interface energy and the liquid-phase nucleation driving force of the alloy. Accordingly, the grain size of the binder phase and the grain morphology of WC are affected. Ultimately these factors affect the performance of the alloy. It is pointed out that the performance of cemented carbide strengthened by ordered γ′ phase precipitation can be improved significantly. It is expected to obtain high-performance cemented carbide materials with excellent high-temperature resistance, corrosion resistance and oxidation resistance. It is proposed that the interfacial microstructure, the relationship between C content and precipitation phase and the anti-wear mechanism of cemented carbide with Co-Ni-Al composite binder phase should be emphasized in future.


  • loading
  • [1] 张伟彬, 杜勇, 彭英彪, 等. 研发硬质合金的集成计算材料工程[J]. 材料科学与工艺, 2016, 24(2): 1-28

    ZHANG W B, DU Y, PENG Y B, et al. Integrated computational materials engineering for developing the cemented carbides[J]. Materials Science & Technology, 2016, 24(2): 1-28.)
    [2] KONYASHIN I, LACHMANN F, RIES B, et al. Strengthening zones in the Co matrix of WC-Co cemented carbides[J]. Scripta Mater, 2014, 83: 17-20 doi: 10.1016/j.scriptamat.2014.03.026
    [3] LI N, ZHANG W, DU Y, et al. A new approach to control the segregation of (Ta, W)C cubic phase in ultrafine WC-10Co-0.5Ta cemented carbides[J]. Scripta Mater, 2015, 100: 48-50 doi: 10.1016/j.scriptamat.2014.12.009
    [4] 湘子. 硬质合金晶粒度分级标准[J]. 硬质合金, 2006, 23(2): 68

    XIANG Z. Cemented carbide grain grade standards[J]. Cemented Carbide, 2006, 23(2): 68.)
    [5] 吴冲浒, 聂洪波, 曾祺森, 等. 超粗晶硬质合金的显微结构和力学性能[J]. 粉末冶金材料科学与工程, 2013, 18(2): 198-204

    WU C H, NIE H B, ZENG Q S, et al. Microstructure and mechanical properties of extra coarse grained cemented carbides[J]. Materials Science and Engineering of Powder Metallurgy, 2013, 18(2): 198-204.)
    [6] SU W, HUANG Z, REN X, et al. Investigation on morphology evolution of coarse grained WC-6Co cemented carbides fabricated by ball milling route and hydrogen reduction route[J]. Int J Refract Met Hard Mater, 2016, 56: 110-117 doi: 10.1016/j.ijrmhm.2016.01.001
    [7] KONYASHIN I, SCH FER F, COOPER R, et al. Novel ultra-coarse hardmetal grades with reinforced binder for mining and construction[J]. Int J Refract Met Hard Mater, 2005, 23(4): 225-232
    [8] GEE M, GANT A, ROEBUCK B. Wear mechanisms in abrasion and erosion of WC/Co and related hardmetals[J]. Wear, 2007, 263(1): 137-148
    [9] PLUCKNETT K P, TIEGS T N, BECHER P F, et al. Ductile intermetallic toughened carbide matrix composites [C]//Victor Greenhut. Proceedings of the 20th Annual Conference on Composites: Advanced Ceramics, Materials, and Structures A: Ceramic Engineering and Science Proceedings. Cocoa Beach, Fla, USA: American Ceramic Society, 1996, 17(3): 314−321.
    [10] LAY S, MISSIAEN J M. 1.03 microstructure and morphology of hardmetals [M]//SARIN V K. Comprehensive Hard Materials. Oxford:Elsevier, 2014: 91-120.
    [11] BORGH I, HEDSTR M P, PERSSON T, et al. Microstructure, grain size distribution and grain shape in WC-Co alloys sintered at different carbon activities[J]. Int J Refract Met Hard Mater, 2014, 43: 205-211 doi: 10.1016/j.ijrmhm.2013.12.007
    [12] 龙坚战, 陆必志, 易茂中, 等. 新型粘结相硬质合金的研究进展[J]. 硬质合金, 2015, 32(3): 204-212

    LONG J Z, LU B Z, YI M Z, et al. Research progress on cemented carbide with novel binders[J]. Cemented Carbide, 2015, 32(3): 204-212.)
    [13] ALMOND E, ROEBUCK B. Identification of optimum binder phase compositions for improved WC hard metals[J]. Materials Science and Engineering: A, 1988, 105: 237-248
    [14] NISHIGAKI K, DOI H, YUKAWA N, et al., Binder phase strengthening through γ′ precipitation of WC-Co-Ni-Cr-Al hard alloys [C]//Proceedings of 11th Plansee Seminar. Reutte, Austria: 1985:487-508.
    [15] ZHANG L, WANG Z, CHEN S, et al. Binder phase strengthening of WC-Co alloy through post-sintering treatment[J]. Int J Refract Met Hard Mater, 2015, 50: 31-36 doi: 10.1016/j.ijrmhm.2014.09.031
    [16] SUZUKI A, POLLOCK T M. High-temperature strength and deformation of γ/γ′ two-phase Co-Al-W-base alloys[J]. Acta Mater, 2008, 56(6): 1288-1297 doi: 10.1016/j.actamat.2007.11.014
    [17] 姚传生, 陈铮, 王永欣, 等. 新型Co基γ-γ′ 两相高温合金研究进展[J]. 稀有金属材料与工程, 2012, 41(11): 2064-2068 doi: 10.3969/j.issn.1002-185X.2012.11.040

    YAO C S, CHEN Z, WANG Y X, et al. Research progress in new Co-based γ-γ′ high-temperature alloys[J]. Rare Metal Materials and Engineering, 2012, 41(11): 2064-2068.) doi: 10.3969/j.issn.1002-185X.2012.11.040
    [18] SATO J, OMORI T, OIKAWA K, et al. Cobalt-base high-temperature alloys[J]. Science, 2006, 312(5770): 90-91 doi: 10.1126/science.1121738
    [19] SUZUKI A, INUI H, POLLOCK T M. L12-strengthened cobalt-base superalloys[J]. Annual Review of Materials Research, 2015, 45: 345-368 doi: 10.1146/annurev-matsci-070214-021043
    [20] SHINAGAWA K, OMORI T, SATO J, et al. Phase Equilibria and Microstructure on γ' Phase in Co-Ni-Al-W System[J]. Materials Transactions, 2008, 49(6): 1474-1479 doi: 10.2320/matertrans.MER2008073
    [21] KAINUMA R, ISE M, JIA C C, et al. Phase equilibria and microstructural control in the Ni-Co-Al system[J]. Intermetallics, 1996, 4: S151-S158 doi: 10.1016/0966-9795(96)00034-9
    [22] 薛飞, 米涛, 王美玲, 等. Ni对Co-Al-W基合金时效组织演变和γ'相溶解行为的影响[J]. 金属学报, 2014, 50(7): 845-853

    XUE F, MI T, WANG M L, et al. Effects of Ni on microstructural evolution and γ' dissolution of novel Co-Al-W base alloys[J]. Acta Metallurgica Sinica, 2014, 50(7): 845-853.)
    [23] KONYASHIN I, RIES B, HLAWATSCHEK D, et al. Wear-resistance and hardness: are they directly related for nanostructured hard materials?[J]. Int J Refract Met Hard Mater, 2015, 49: 203-211 doi: 10.1016/j.ijrmhm.2014.06.017
    [24] KONYASHIN I, RIES B. Wear damage of cemented carbides with different combinations of WC mean grain size and Co content. Part II: Laboratory performance tests on rock cutting and drilling[J]. Int J Refract Met Hard Mater, 2014, 45: 230-237 doi: 10.1016/j.ijrmhm.2014.04.017
    [25] 王兴庆, 李晓东, 郭海亮, 等. Al含量对WC-Co硬质合金耐腐蚀性能的影响[J]. 粉末冶金材料科学与工程, 2006, 11(4): 219-224 doi: 10.3969/j.issn.1673-0224.2006.04.007

    WANG X Q, LI X D, GUO H L, et al. Influence of Al content on properties of corrosion resistance of WC-Co cemented carbide[J]. Materials Science and Engineering of Powder Metallurgy, 2006, 11(4): 219-224.) doi: 10.3969/j.issn.1673-0224.2006.04.007
    [26] 金益民. 粘结相强化及其在辊环中的应用[J]. 硬质合金, 2011, 28(2): 126-129 doi: 10.3969/j.issn.1003-7292.2011.02.011

    JIN Y M. Reinforcement of binder phase and its application in carbide rolls[J]. Cemented Carbide, 2011, 28(2): 126-129.) doi: 10.3969/j.issn.1003-7292.2011.02.011
    [27] PENG Y, DU Y, ZHOU P, et al. CSUTDCC1-A thermodynamic database for multicomponent cemented carbides[J]. Int J Refract Met Hard Mater, 2014, 42: 57-70 doi: 10.1016/j.ijrmhm.2013.10.005
    [28] WANG Y, ZHOU P, PENG Y, et al. A thermodynamic description of the Al-Co-Ni system and site occupancy in Co + AlNi3 composite binder phase[J]. J Alloys Compd, 2016, 687: 855-866 doi: 10.1016/j.jallcom.2016.06.002
    [29] LONG J Z, ZHANG Z J, XU T, et al. WC-Ni3Al-B composites prepared through Ni + Al elemental powder route[J]. Trans Nonferrous Met Soc China, 2012, 22(4): 847-852 doi: 10.1016/S1003-6326(11)61255-7
    [30] WEIDOW J, ANDR N H-O. Binder phase grain size in WC-Co-based cemented carbides[J]. Scripta Mater, 2010, 63(12): 1165-1168 doi: 10.1016/j.scriptamat.2010.08.025
    [31] SARIN V, JOHANNESSON T. On the deformation of WC-Co cemented carbides[J]. Metal Science, 1975, 9(1): 472-476 doi: 10.1179/030634575790444531
    [32] WILLBRAND J, WIELAND U. The size of coherent domains in the binder metal of cobalt-bonded tungsten carbide[J]. Int J Powder Metall, 1972, 8(2): 89-93
    [33] LONG J Z, ZHANG W B, WANG Y R, et al. A new type of WC-Co-Ni-Al cemented carbide: grain size and morphology of γ′-strengthened composite binder phase[J]. Scripta Mater, 2017, 126: 33-36 doi: 10.1016/j.scriptamat.2016.08.007
    [34] GERMAN R M, SURI P, PARK S J. Review: liquid phase sintering[J]. J Mater Sci, 2009, 44(1): 1-39 doi: 10.1007/s10853-008-3008-0
    [35] MANNESSON K, JEPPSSON J, BORGENSTAM A, et al. Carbide grain growth in cemented carbides[J]. Acta Mater, 2011, 59(5): 1912-1923 doi: 10.1016/j.actamat.2010.11.056
    [36] ROHRER G S, ROHRER C L, MULLINS W W. Coarsening of faceted crystals[J]. J Am Ceram Soc, 2002, 85(3): 675-682
    [37] BORGH I, HEDSTR M P, ODQVIST J, et al. On the three-dimensional structure of WC grains in cemented carbides[J]. Acta Mater, 2013, 61(13): 4726-4733 doi: 10.1016/j.actamat.2013.05.008
    [38] CHRISTENSEN M, WAHNSTR M G, ALLIBERT C, et al. Quantitative analysis of WC grain shape in sintered WC-Co cemented carbides[J]. Phys Rev Lett, 2005, 94(6): 066105 doi: 10.1103/PhysRevLett.94.066105
    [39] LONG J Z, LI K, CHEN F, et al. Microstructure evolution of WC grains in WC-Co-Ni-Al alloys: effect of binder phase composition[J]. J Alloys Compd, 2017, 710: 338-348 doi: 10.1016/j.jallcom.2017.03.284
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (7342) PDF downloads(62) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint