Volume 38 Issue 4
Aug.  2018
Turn off MathJax
Article Contents
Liukui GONG, Jinfa LIAO, Jihui YUAN, Guihe LI, Huiming CHEN. Effect of Rare Earth Y on Microstructure and Properties of Sn-58Bi Solder Alloy[J]. Journal of Aeronautical Materials, 2018, 38(4): 101-108. doi: 10.11868/j.issn.1005-5053.2018.000007
Citation: Liukui GONG, Jinfa LIAO, Jihui YUAN, Guihe LI, Huiming CHEN. Effect of Rare Earth Y on Microstructure and Properties of Sn-58Bi Solder Alloy[J]. Journal of Aeronautical Materials, 2018, 38(4): 101-108. 10.11868/j.issn.1005-5053.2018.000007

Effect of Rare Earth Y on Microstructure and Properties of Sn-58Bi Solder Alloy

doi: 10.11868/j.issn.1005-5053.2018.000007
  • Received Date: 2018-01-01
  • Rev Recd Date: 2018-04-17
  • Publish Date: 2018-08-01
  • Sn-58Bi-xY alloys with different Y contents (x = 0.0%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5% (mass fraction, the same below )) were fabricated in a vacuum furnace in nitrogen atmosphere. Microstructure, phase composition, melting characteristic, wettability and hardness of the alloys were investigated, and the influence of the rare earth Y on the formation of intermetallic compound among Sn-58Bi/Cu were analyzed, and the shear strength were test. The results show that the Sn-Bi microstructure is refined, and the microstructure of Sn-58Bi-xY is rich in Sn phase, Bi phase and eutectic microstructure of layered structure. The rare earth Y is distributed in rich Bi phase evenly. The melting points and melting ranges are less affected with the Y addition. The wettability of Sn-58Bi alloys reduces when the Y contents increase, but the hardness of Sn-58Bi alloys increases and reaches the maximum value 24.18HV when the content of Y is 0.4%. Rare earth Y can improve the shear strength of Sn-58Bi-xY/Cu solder joints, and the shear strength of the joints reach the maximum value 53.55 MPa when the content of Y is 0.2%. Y can promote the reaction of Sn-58Bi solder with Cu during welding and forming Cu6Sn5 intermetallic compound.


  • loading
  • [1] SHNAWAH D A, MOHD S M F, BADRUDDIN I A. A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products[J]. Microelectronics Reliability, 2012, 52: 90-99 doi: 10.1016/j.microrel.2011.07.093
    [2] LI J F, MANMAN S H, CLODE M P, et al. Interfacial reactions between molten Sn-Bi-X solders and Cu substrates for liquid solder interconnects[J]. Acta Materialia, 2006, 54(11): 2907-2922 doi: 10.1016/j.actamat.2006.02.030
    [3] LI J F, MANMAN S H, CLODE M P, et al. Comparison of interfacial reactions of Ni and Ni-P in extended contact with liquid Sn-Bi-based solders[J]. Acta Materialia, 2007, 55(2): 737-752 doi: 10.1016/j.actamat.2006.09.003
    [4] BISMARCK L S, VITOR C E D S, AMAURI G, et al. Effects of solidification thermal parameters on microstructure and mechanical properties of Sn-Bi solder alloys[J]. Journal of Electronic Materials, 2017, 46(3): 1754-1769 doi: 10.1007/s11664-016-5225-7
    [5] 陈剑明, 张建波, 李明茂. Sn-Bi系低温无Pb焊料的研究现状及发展趋势[J]. 有色金属材料与工程, 2017, 38(2): 112-118

    Chen J M, Zhang J B, Li M M. Review of Sn-Bi low temperature lead-free solder[J]. Nonferrous metal materials and engineering, 2017, 38(2): 112-118.)
    [6] KOTADIA H R, HOWES P D, MANMAN S H. A review: on the development of low melting temperature Pb-free solders[J]. Microelectronics Reliability, 2014, 54(6/7): 1253-1273
    [7] LIN S K, NGUYEN T L, WU S C, et al. Effective suppression of interfacial intermetallic compound growth between Sn-58 wt.% Bi solders and Cu substrates by minor Ga addition[J]. Journal of Alloys and Compounds, 2014, 586: 319-327 doi: 10.1016/j.jallcom.2013.10.035
    [8] SHEN J, PU Y Y, YIN H G, et al. Effects of Cu, Zn on the wettability and shear mechanical properties of Sn-Bi-based lead-free solders[J]. Journal of Electronic Materials, 2015, 44(1): 532-541 doi: 10.1007/s11664-014-3460-3
    [9] ZANG L K, YUAN Z F, ZHAO H X, et al. Wettability of molten Sn-Bi-Cu solder on Cu substrate[J]. Materials Letters, 2009, 63: 2067-2069 doi: 10.1016/j.matlet.2009.06.052
    [10] MOKHTARI O, NISHIKAWA H. Effects of In and Ni addition on microstructure of Sn-58Bi solder joint[J]. Journal of Electronic Materials, 2014, 43(11): 4158-4170 doi: 10.1007/s11664-014-3359-z
    [11] LIU X Y, HUANG M L, WU C M L, et al. Effect of Y2O3 particles on microstructure formation and shear properties of Sn-58Bi solder[J]. Journal of Materials Science: Materials in Electronics, 2010, 21: 1046-1054 doi: 10.1007/s10854-009-0025-y
    [12] LIU P L, SHANG J K. Interfacial segregation of bismuth in copper/tin-bismuth solder interconnect[J]. Scripta Materialia, 2001, 44(7): 1019-1023 doi: 10.1016/S1359-6462(01)00670-4
    [13] LAI Z M, YE D. Microstructure and properties of Sn-10Bi-xCu solder alloy joint[J]. Journal of Electronic Materials, 2016, 45(7): 3702-3711 doi: 10.1007/s11664-016-4561-y
    [14] 胡丽, 曾明, 张业明, 等. Ag对Sn-Bi无铅钎料压入蠕变性能及显微组织的影响[J]. 西华大学学报(自然科学版), 2010, 29(4): 72-78 doi: 10.3969/j.issn.1673-159X.2010.04.020

    HU L, ZENG M, ZHANG Y M, et al. Effect of Ag on indentation creep property and microstructure of Sn-Bi solder[J]. Journal of Xihua University(Natural Science), 2010, 29(4): 72-78.) doi: 10.3969/j.issn.1673-159X.2010.04.020
    [15] SUN H Y, CHAN Y C, WU F S. Effect of CNTs and Ni coated CNTs on the mechanical performance of Sn57.6Bi0.4Ag BGA[J]. Materials Science and Engineering: A, 2016, 656: 249-255 doi: 10.1016/j.msea.2016.01.045
    [16] ZHANG C, LIU S D, QIAN G T, et al. Effect of Sb content on properties of Sn-Bi solders[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(1): 184-191 doi: 10.1016/S1003-6326(14)63046-6
    [17] 杨斌, 陈剑明, 邬善江,等. Sn-58Bi-(0~3)Ga/Cu润湿剪切性能及界面化合物的研究[J]. 材料导报, 2017, 31(7): 92-95

    YANG B, CHEN J M, WU S J, et al. Study on wetting shearing properties and interface compounds of Sn-58Bi-(0~3)Ga/Cu[J]. Materials Review, 2017, 31(7): 92-95.)
    [18] 李群, 黄继华, 张华, 等. Al对Sn58Bi无铅钎料组织及性能的影响[J]. 电子工艺技术, 2008, 29(1): 1-4 doi: 10.3969/j.issn.1001-3474.2008.01.001

    LI Q, HUANG J H, ZHANG H, et al. Influence of Al on microstructure and mechanical properties of the Sn-58Bi lead-free solder[J]. Electronice Process Technology, 2008, 29(1): 1-4.) doi: 10.3969/j.issn.1001-3474.2008.01.001
    [19] DONG W X, SHI Y W, XIA Z D, et al. Effects of trace amounts of rare earth additions on microstructure and properties of Sn-Bi-based solder alloy[J]. Journal of Electronic Materials, 2008, 37(7): 982-991 doi: 10.1007/s11664-008-0458-8
    [20] CHUANG T H, WU H F. Effects of Ce addition on the microstructure and mechanical properties of Sn-58Bi solder joints[J]. Journal of Electronic Materials, 2011, 40(1): 71-77 doi: 10.1007/s11664-010-1385-z
    [21] XIE H X, FRIEDMAN D, MIRPURI K, et al. Electromigration damage characterization in Sn-3.9Ag-0.7Cu and Sn-3.9Ag- 0.7Cu-0.5Ce solder joints by three-dimensional X-ray tomography and scanning electron microscopy[J]. Journal of Electronic Materials, 2014, 43(1): 33-41 doi: 10.1007/s11664-013-2667-z
    [22] XIE H X, CHAWLA N. Mechanical shock behavior of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce solder joints[J]. Microelectronics Reliability, 2013, 53: 733-740 doi: 10.1016/j.microrel.2012.12.010
    [23] WU J, XUE S B, WANG J W, et al. Effect of Pr addition on properties and Sn whisker growth of Sn-0.3Ag-0.7Cu low-Ag solder for electronic packaging[J]. Journal of Materials Science: Materials in Electronics, 2017, 28: 10230-10244 doi: 10.1007/s10854-017-6790-0
    [24] XU J C, XUE S B, XUE P, et al. Study on microstructure and properties of Sn-0.3Ag-0.7Cu solder bearing Nd[J]. Journal of Materials Science: Materials in Electronics, 2016, 27: 8771-8777 doi: 10.1007/s10854-016-4901-y
    [25] CHOI H, KAPLAN W D, CHOE H. Effect of Yttrium on fracture strength of the Sn-1.0Ag-0.5Cu solder joint[J]. Journal of Electronic materials, 2016, 45(7): 3260-3262
    [26] 周迎春, 潘清林, 何运斌, 等. La对Sn-Ag-Cu无铅钎料组织与性能的影响[J]. 电子工艺技术, 2007, 28(6): 341-344 doi: 10.3969/j.issn.1001-3474.2007.06.009

    ZHOU Y C, PAN Q L, HE Y B, et al. Effects of La on Microstructures and properties of Sn-Ag-Cu lead-free solder alloy[J]. Electronics Process Technology, 2007, 28(6): 341-344.) doi: 10.3969/j.issn.1001-3474.2007.06.009
    [27] SUN L, ZHANG L. Properties and microstructures of Sn-Ag-Cu-X lead-free solder joints in electronic packaging[J]. Advances in Materials Science and Engineering, 2015, 2015: 1-16
    [28] GOH Y X, HASEEB A S M A, LIEW H L, et al. Deformation and fracture behavior of electroplated Sn-Bi/Cu solder joints[J]. Journal of Materials Science, 2015, 50(12): 4258-4269 doi: 10.1007/s10853-015-8978-0
    [29] SILVA B L, XAVIER M G C, GARCIA A, et al. Cu and Ag additions effecting the solidification microstructure and tensile properties of Sn-Bi lead-free solder alloys[J]. Materials Science and Engineering:A, 2017, 705: 325-334 doi: 10.1016/j.msea.2017.08.059
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (7318) PDF downloads(56) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint