Volume 40 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
Kaibo NIE, Zhihao ZHU, Kunkun DENG, Jungang HAN. Microstructure and mechanical properties of ultra-high strength TiCp/Mg-1.4Zn-2.6Ca-0.5Mn nanocomposite after hot extrusion[J]. Journal of Aeronautical Materials, 2020, 40(5): 20-28. doi: 10.11868/j.issn.1005-5053.2020.000083
Citation: Kaibo NIE, Zhihao ZHU, Kunkun DENG, Jungang HAN. Microstructure and mechanical properties of ultra-high strength TiCp/Mg-1.4Zn-2.6Ca-0.5Mn nanocomposite after hot extrusion[J]. Journal of Aeronautical Materials, 2020, 40(5): 20-28. 10.11868/j.issn.1005-5053.2020.000083

Microstructure and mechanical properties of ultra-high strength TiCp/Mg-1.4Zn-2.6Ca-0.5Mn nanocomposite after hot extrusion

doi: 10.11868/j.issn.1005-5053.2020.000083
  • Received Date: 2020-05-09
  • Rev Recd Date: 2020-06-10
  • Available Online: 2020-08-20
  • Publish Date: 2020-10-01
  • A uniform distribution of TiCp nanoparticles was realized in the TiCp/Mg-1.4Zn-2.6Ca-0.5Mn nanocomposite fabricated by the method of ultrasonic-assisted semisolid stirring. Microstructure and mechanical properties of the nanocomposite before and after extrusion were investigated. The results show that the grains in the dense area of the second phase were smaller than those in the barren area, and the second phase was Ca2Mg6Zn3. Dynamic recrystallization (DRX) occurred in the nanocomposites after extrusion at different temperatures (350 °C, 310 °C and 270 °C). Both the sizes and volume fraction of DRX grains and precipitates size were obviously refined as the extrusion temperature decreased, while the volume fraction of precipitates increased. Ultrafine recrystallized grain structure (≈0.34 μm) with a substantial of fine precipitates appeared in the nanocomposite extruded at 270 °C. The refined grain structure was not only due to DRX, but also the synergistic pinning effect of nano-TiCp, precipitated MgZn2 and α-Mn particles. The optimum tensile strength was achieved in the nanocomposites extruded at 270 °C/0.1 mm•s–1, and the yield strength (YS), ultimate tensile strength (UTS) and elongation to failure (EL)were ≈439.7 MPa、≈460.2 MPa and ≈1.73%, respectively. The grain refinement strengthening with the contribution ratio over 60% to YS increment was much higher relative to thermal expansion effect, Orowan strengthening and dislocation strengthening.


  • loading
  • [1] DENG K K,WANG C J,NIE K B,et al. Recent research on the deformation behavior of particle reinforced magnesium matrix composite:a review[J]. Acta Metallurgica Sinica(English Letters),2019,32(4):413-425.
    [2] NIE K B,ZHU Z H,DENG K K,et al. Hot deformation behavior and processing maps of SiC nanoparticles and second phase synergistically reinforced magnesium matrix composites[J]. Nanomaterials,2019,9(1):57. doi: 10.3390/nano9010057
    [3] 徐雪雪,朱世杰,王青,等. 搅拌摩擦加工对Mg-Zn-Y-Nd 合金厚板组织与性能的影响[J]. 航空材料学报,2019,39(1):9-16.

    XU X X,ZHU S J,WANG Q,et al. Effects of single-side and double-side friction stir processing on microstructure and properties of Mg-Zn-Y-Nd alloy thick plate[J]. Journal of Aeronautical Materials,2019,39(1):9-16.)
    [4] NIE K B,HAN J G,DENG K K,et al. Simultaneous improvements in tensile strength and elongation of a Mg-2Zn-0.8Sr-0.2Ca alloy by a combination of microalloying and low content of TiC nanoparticles[J]. Materials Letters,2020,260:126951. doi: 10.1016/j.matlet.2019.126951
    [5] NIE K B,GUO Y C,MUNROE M,et al. Microstructure and tensile properties of magnesium matrix nanocomposite reinforced by high mass fraction of nano-sized particles including TiC and MgZn2[J]. Journal of Alloys and Compounds,2020,819:153348. doi: 10.1016/j.jallcom.2019.153348
    [6] 何阳,袁秋红,罗岚,等. 镁基复合材料研究进展及新思路[J]. 航空材料学报,2018,38(4):26-36. doi: 10.11868/j.issn.1005-5053.2018.001013

    HE Y,YUAN Q H,LUO L,et al. Current study and novel ideas on magnesium matrix composites[J]. Journal of Aeronautical Materials,2018,38(4):26-36.) doi: 10.11868/j.issn.1005-5053.2018.001013
    [7] ZHU Z H,NIE K B,DENG K K,et al. Fabrication of biodegradable magnesium matrix composite with ultrafine grains and high strength by adding TiC nanoparticles to Mg-1.12Ca-0.84Zn-0.23Mn(at. %)alloy[J]. Materials Science & Engineering:C,2020,107:110360.
    [8] NIE K B,ZHU Z H,MUNROE M,et al. Microstructure,tensile properties and work hardening behavior of an extruded Mg-Zn-Ca-Mn magnesium alloy[J]. Acta Metallurgica Sinica(English Letters),2020,33:922-936.
    [9] NIE K B,ZHU Z H,MUNROE M,et al. The effect of Zn/Ca ratio on the microstructure,texture and mechanical properties of dilute Mg-Zn-Ca-Mn alloys that exhibit superior strength[J]. Journal of Materials Science,2020,55:3588-3604. doi: 10.1007/s10853-019-04174-4
    [10] NIE K B,WANG X J,XU L,et al. Effect of hot extrusion on microstructures and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite [J]. Journal of Alloys and Compounds,2012,512(1):355-360. doi: 10.1016/j.jallcom.2011.09.099
    [11] GUO Y C,NIE K B,KANG X K,et al. Achieving high-strength magnesium matrix nanocomposite through synergistical effect of external hybrid (SiC+TiC) nanoparticles and dynamic precipitated phase[J]. Journal of Alloys and Compounds,2019,771:847-856. doi: 10.1016/j.jallcom.2018.09.030
    [12] KHOSHZABN K H,FERESHTEH S F,ABEDI H R. Mechanical properties improvement of cast AZ80 Mg alloy/nano-particles composite via thermomechanical processing[J]. Materials Science and Engineering:A,2014,595:284-90. doi: 10.1016/j.msea.2013.12.029
    [13] NIE K B,GUO Y C,DENG K K,et al. High strength TiCp/Mg-Zn-Ca magnesium matrix nanocomposites with improved formability at low temperature[J]. Journal of Alloys and Compounds,2019,792:267-278. doi: 10.1016/j.jallcom.2019.04.028
    [14] PARAMSOTHY M,CHAN J,KWOK R,et al. Adding TiC nanoparticles to magnesium alloy ZK60A for strength/ductility enhancement[J]. Journal of Nanomaterials,2011(12):1-9.
    [15] NIE K B,KANG X K,DENG K K,et al. Development of Mg-Zn-Y-Ca alloys containing icosahedral quasicrystal phase through trace addition of Y[J]. Journal of Materials Research,2018,33(18):2806-2816. doi: 10.1557/jmr.2018.267
    [16] NIE K B,ZHU Z H,DENG K K,et al. Influence of extrusion parameters on microstructure,texture and mechanical properties of a low Mn and high-Ca containing Mg-2.9Zn-1.1Ca-0.5Mn magnesium alloy[J]. Journal of Materials Research and Technology,2020,9(3):5264-5277. doi: 10.1016/j.jmrt.2020.03.053
    [17] NIE K B, ZHU Z H, DENG K K, et al. Microstructure and tensile strength of nano-TiCp/Mg-Zn-Ca magnesium matrix nanocomposites processed by multidirectional forging [J/OL]. Metals and Materials International, 2019. https://doi.org/10.1007/s12540-019-00569-9
    [18] 叶想平,李英雷,翁继东,等. 颗粒增强金属基复合材料的强化机理研究现状[J]. 材料工程,2018,46(12):28-37. doi: 10.11868/j.issn.1001-4381.2016.001214

    YE X P,LI Y L,WENG J D,et al. Research status on strengthening mechanism of particle-renforced metal matrix composites[J]. Journal of Materials Engineering,2018,46(12):28-37.) doi: 10.11868/j.issn.1001-4381.2016.001214
    [19] SANATY A Z. Comparison between current models for the strength of particulate-reinforcedmetal matrix nanocomposites with emphasis on consideration of Hall-Petch effect[J]. Materials Science and Engineering:A,2012,531:112-118. doi: 10.1016/j.msea.2011.10.043
    [20] JIANG Z T,JIANG B,YANG H,et al. Influence of the Al2Ca phase on microstructure and mechanical properties of Mg-Al-Ca alloys[J]. Journal of Alloys and Compounds,2015,647:357-363. doi: 10.1016/j.jallcom.2015.06.060
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (11470) PDF downloads(49) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint