Volume 36 Issue 6
Dec.  2016
Turn off MathJax
Article Contents
Fei LIAO, Shitong FAN, Yunlai DENG, Jin ZHANG. First-principle Calculations of Mechanical Properties of Al2Cu, Al2CuMg and MgZn2 Intermetallics in High Strength Aluminum Alloys[J]. Journal of Aeronautical Materials, 2016, 36(6): 1-8. doi: 10.11868/j.issn.1005-5053.2016.6.001
Citation: Fei LIAO, Shitong FAN, Yunlai DENG, Jin ZHANG. First-principle Calculations of Mechanical Properties of Al2Cu, Al2CuMg and MgZn2 Intermetallics in High Strength Aluminum Alloys[J]. Journal of Aeronautical Materials, 2016, 36(6): 1-8. 10.11868/j.issn.1005-5053.2016.6.001

First-principle Calculations of Mechanical Properties of Al2Cu, Al2CuMg and MgZn2 Intermetallics in High Strength Aluminum Alloys

doi: 10.11868/j.issn.1005-5053.2016.6.001
  • Received Date: 2015-12-31
  • Rev Recd Date: 2016-03-16
  • Publish Date: 2016-12-01
  • Structural stabilities, mechanical properties and electronic structures of Al2Cu, Al2CuMg and MgZn2 intermetallics in Al-Zn-Mg-Cu aluminum alloys were determined from the first-principle calculations by VASP based on the density functional theory. The results show that the cohesive energy (Ecoh) decreases in the order MgZn2 > Al2CuMg > Al2Cu, whereas the formation enthalpy (ΔH) decreases in the order MgZn2 > Al2Cu > Al2CuMg. Al2Cu can act as a strengthening phase for its ductile and high Young's modulus. The Al2CuMg phase exhibits elastic anisotropy and may act as a crack initiation point. MgZn2 has good plasticity and low melting point, which is the main strengthening phase in the Al-Zn-Mg-Cu aluminum alloys. Metallic bonding mode coexists with a fractional ionic interaction in Al2Cu, Al2CuMg and MgZn2, and that improves the structural stability. In order to improve the alloys' performance further, the generation of MgZn2 phase should be promoted by increasing Zn content while Mg and Cu contents are decreased properly.


  • loading
  • [1] 方华婵, 陈康华, 巢宏, 等. Al-Zn-Mg-Cu系超强铝合金的研究现状与展望[J]. 粉末冶金材料科学与工程, 2009, 14(6): 351-358. http://www.cnki.com.cn/Article/CJFDTOTAL-FMGC200906002.htm

    FANG H C, CHEN K H, CHAO H, et al. Current research status and prospects of ultra strength Al-Zn-Mg-Cu aluminum alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2009, 14(6): 351-358.) http://www.cnki.com.cn/Article/CJFDTOTAL-FMGC200906002.htm
    [2] 王祝堂, 田荣璋. 铝合金及其加工手册[M]. 长沙: 中南工业大学出版社, 2000: 262-264.
    [3] 张新明, 邓运来, 张勇. 高强铝合金的发展及其材料的制备加工技术[J]. 金属学报, 2015, 51(3): 257-271. http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201503001.htm

    ZHANG X M, DENG Y L, ZHANG Y. Development of high strength aluminum alloys and processing techniques for the materials[J]. Acta Metallurgica Sinica, 2015, 51(3): 257-271.) http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201503001.htm
    [4] 杨修波. Al-Zn-Mg(Cu)合金的热处理、微观结构与性能研究[D]. 长沙: 湖南大学, 2014.

    YANG X B. Research on microstructures and properties of Al-Zn-Mg (Cu) alloy after different heat treatment[D]. Changsha: Hunan University, 2014.)
    [5] ZHANG J, HUANG Y N, MAO C, et al. Structural, elastic and electronic properties of θ (Al2Cu) and S (Al2CuMg) strengthening precipitates in Al-Cu-Mg series alloys: First-principles calculations[J]. Solid State Communications, 2012, 152(23): 2100-2104. doi: 10.1016/j.ssc.2012.09.003
    [6] 韩逸, 李炼, 邓桢桢, 等. 热力学计算优化Al-Zn-Mg-Cu合金成分[J]. 中国有色金属学报, 2011, 21(1): 179-184. doi: 10.1016/S1003-6326(11)60696-1

    HAN Y, LI L, DENG Z Z, et al. Constituent optimization of Al-Zn-Mg-Cu alloy based on thermodynamic calculation method[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(1): 179-184.) doi: 10.1016/S1003-6326(11)60696-1
    [7] FURTHMÜLLER J, KRESSE G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. doi: 10.1103/PhysRevB.54.11169
    [8] JOUBERT D, KRESSE G. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. doi: 10.1103/PhysRevB.59.1758
    [9] BURKE K, ERNZERHOF M, PERDEW J P. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [10] PACK J D, MONKHORST H J. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. doi: 10.1103/PhysRevB.13.5188
    [11] GRIN Y, WAGNER F R, ARMBRVSTER M, et al. CuAl2 revisited: composition, crystal structure, chemical bonding, compressibility and Raman spectroscopy[J]. Journal of Solid State Chemistry, 2006, 179(6): 1707-1719. doi: 10.1016/j.jssc.2006.03.006
    [12] CHEN H, YANG L, LONG J. First-principles investigation of the elastic, Vickers hardness and thermodynamic properties of Al-Cu intermetallic compounds[J]. Superlattices and Microstructures, 2015, 79(2): 156-165. http://cn.bing.com/academic/profile?id=2088394626&encoded=0&v=paper_preview&mkt=zh-cn
    [13] CALVERT L D, VILLARS P. Pearson's handbook of crystallographic data for intermetallic phases[M]. OH: ASM, Materials Park, 1991.
    [14] HEYING B, HOFFMANN R D, POETTGEN R. Structure refinement of the S-phase precipitate MgCuAl2[J]. Chem Inform, 2005, 36(33): 491-494.
    [15] YANG J, WANG J L, WU Y M, et al. Extended application of edge-to-edge matching model to HCP/HCP (α-Mg/MgZn2) system in magnesium alloys[J]. Materials Science and Engineering: A, 2007, 460/461(5): 296-300. http://cn.bing.com/academic/profile?id=1988643461&encoded=0&v=paper_preview&mkt=zh-cn
    [16] KOMURA Y, TOKUNAGA K. Structural studies of stacking variants in Mg-base Friauf-Laves phases[J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1980, 36(7): 1548-1554. doi: 10.1107/S0567740880006565
    [17] 刘俊涛, 张永安, 李锡武, 等. Al-9.5 Zn-2.0 Mg-1.7 Cu合金的热力学计算[J]. 航空材料学报, 2013, 33(6): 1-7. http://jam.biam.ac.cn/CN/article/searchArticleResult.do#1

    LIU J T, ZHANG Y A, LI X W, et al. Thermodynamic calculation of Al-9.5Zn-2.0Mg-1.7Cu alloy[J]. Journal of Aeronautical Materials, 2013, 33(6): 1-7.) http://jam.biam.ac.cn/CN/article/searchArticleResult.do#1
    [18] HILL R. The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society A, 1952, 65(5): 349-357. doi: 10.1088/0370-1298/65/5/307
    [19] WATT J P, PESELNICK L. Clarification of the Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries[J]. Journal of Applied Physics, 1980, 51(3): 1525-1531. doi: 10.1063/1.327804
    [20] WATT J P. Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry[J]. Journal of Applied Physics, 1979, 50(10): 6290-6295. doi: 10.1063/1.325768
    [21] BORN M, HUANG K. Dynamical theory of crystal lattices[M]. Oxford: Oxford University Press, 1998.
    [22] ESHELMAN F R, SMITH J F. Single-crystal elastic constants of Al2Cu[J]. Journal of Applied Physics, 1978, 49(6): 3284-3288. doi: 10.1063/1.325278
    [23] SEIDENKRANZ T, HEGENBARTH E. Single-crystal elastic constants of MgZn2 in the temperature range from 4.2 to 300 K[J]. Physica Status Solidi A, 1976, 33(1): 205-210. doi: 10.1002/(ISSN)1521-396X
    [24] PUGH S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823-843. doi: 10.1080/14786440808520496
    [25] RANGANATHAN S I, OSTOJA-STARZEWSKI M. Universal elastic anisotropy index[J]. Physical Review Letters, 2008, 101(5): 055504. doi: 10.1103/PhysRevLett.101.055504
    [26] TANG W, SANVILLE E, HENKELMAN G. A grid-based Bader analysis algorithm without lattice bias[J]. Journal of Physics: Condensed Matter, 2009, 21(8): 84204-84211. doi: 10.1088/0953-8984/21/8/084204
    [27] 刘晓涛, 崔建忠. Al-Zn-Mg-Cu系超高强铝合金的研究进展[J]. 材料导报, 2005, 19(3): 47-51. http://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200503013.htm

    LIU X T, CUI J Z. Progress in research on ultra high strength Al-Zn-Mg-Cu alloy[J]. Materials Review, 2005, 19(3): 47-51.) http://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200503013.htm
    [28] LI C M, CHEN Z Q, ZENG S M, et al. Intermetallic phase formation and evolution during homogenization and solution in Al-Zn-Mg-Cu alloys[J]. Science China Technological Sciences, 2013, 56(11): 2827-2838. doi: 10.1007/s11431-013-5356-5
    [29] 樊喜刚, 蒋大鸣, 单长智, 等. Cu含量对Al-Zn-Mg-Cu合金的组织性能和断裂行为的影响[J]. 轻合金加工技术, 2006, 34(2): 31-35. http://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ200602010.htm

    FAN X G, JIANG D M, SHAN C Z, et al. Effect of copper content on the properties and fracture behavior in Al-Zn-Mg-Cu alloys[J]. Light Alloy Fabrication Technology, 2006, 34(2): 31-35.) http://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ200602010.htm
    [30] MARLAUD T, DDESCHAMPS A, BLEY F, et al. Influence of alloy composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys[J]. Acta Materialia, 2010, 58(1): 248-260. doi: 10.1016/j.actamat.2009.09.003
    [31] FANG X, SONG M, LI K, et al. Effects of Cu and Al on the crystal structure and composition of η (MgZn2) phase in over-aged Al-Zn-Mg-Cu alloys[J]. Journal of Materials Science, 2012, 47(14): 5419-5427. doi: 10.1007/s10853-012-6428-9
    [32] CHEN K, LIU H, ZHANG Z, et al. The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments[J]. Journal of Materials Processing Technology, 2003, 142(1): 190-196. doi: 10.1016/S0924-0136(03)00597-1
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (8428) PDF downloads(89) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint